ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Sal B. Rodriguez, Randall O. Gauntt, Randy Cole, Fred Gelbard, Katherine McFadden, Tom Drennen, Billy Martin, David Louie, Louis Archuleta, Mohamed El-Genk, Jean-Michel Tournier, Flor Espinoza, Shripad T. Revankar, Karen Vierow
Nuclear Technology | Volume 166 | Number 1 | April 2009 | Pages 76-85
Technical Paper | Special Issue on Nuclear Hydrogen Production, Control, and Management | doi.org/10.13182/NT09-A6970
Articles are hosted by Taylor and Francis Online.
MELCOR is a thermal-hydraulic code used by the United States and the international nuclear community for the modeling of both light water and gas-cooled reactors. MELCOR was extended in order to model nuclear reactors that are coupled to the sulfur-iodine (SI) cycle for cogeneration of hydrogen. This version of the code is known as MELCOR-H2, and it includes modular secondary system components (e.g., turbines, compressors, heat exchangers, and generators), a point-kinetics model, and a graphical user interface. MELCOR-H2 allows for the fully coupled, transient analysis and design of the nuclear thermochemical SI cycle for the purpose of maximizing the production of hydrogen and electricity. Recent work has demonstrated that the hydrogen generation rate calculated by MELCOR-H2 for the SI cycle was within the expected theoretical yield.In order to benchmark MELCOR-H2, we simulated a set of sulfuric acid decomposition experiments that were conducted at Sandia National Laboratories during 2006. We also used MELCOR-H2 to simulate a 2004 Japan Atomic Energy Research Institute SI experiment.The simulations compared favorably with both experiments; most measured and calculated outputs were within 10%. The simulations adequately calculated O2, SO2, and H2 production rate, acid conversion efficiency, the relationship between solution mole percent and conversion efficiency, and the relationship between molar flow rate and efficiency.We also simulated a 6-stage turbine and a 20-stage compressor. Our results were mostly within 1 or 2% of the literature. Then, we simulated a pebble bed very high temperature reactor (VHTR) and compared key MELCOR-H2 results with the literature. The comparison showed that the results were typically within 1 or 2%. Finally, we compared the MELCOR-H2 point-kinetics model with the exact Inhour reactivity solution for various cases, including a 1.0 $ step reactivity insertion. We were able to employ a large time step while successfully matching the theoretical power level. These comparisons demonstrate MELCOR-H2's unique ability to simulate fully coupled VHTRs for the production of hydrogen.