ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Nicholas R. Brown, Seungmin Oh, Shripad T. Revankar, Cheikhou Kane, Salvador Rodriguez, Randall Cole, Jr., Randall Gauntt
Nuclear Technology | Volume 166 | Number 1 | April 2009 | Pages 43-55
Technical Paper | Special Issue on Nuclear Hydrogen Production, Control, and Management | doi.org/10.13182/NT09-A6967
Articles are hosted by Taylor and Francis Online.
This paper presents a transient control volume modeling scheme for both the sulfur-iodine (SI) and Westinghouse hybrid sulfur (HyS) thermochemical cycles. These cycles are very important candidates for the large-scale production of hydrogen in the 21st century. In this study, transient control volume models of the SI and HyS cycles are presented, along with a methodology for coupling these models to codes that describe the transient behavior of a high-temperature nuclear reactor. The transient SI and HyS cycle models presented here are based on a previous model with a significant improvement, namely, pressure variation capability in the chemical reaction chambers. This pressure variation capability is obtained using the ideal gas law, which is differentiated with respect to time. The HyS model is based on a time-dependent application of the Nernst equation. Investigation of the new pressure assumption yields a peak pressure rate of change of 5.877 kPa/s for a temperature-driven transient test matrix and 2.993 kPa/s for a mass flow rate-driven transient test matrix. These high rates of pressure change suggest that an accurate model of the SI and/or HyS cycle must include some method of accounting for pressure variation. The HyS model suggests that the hydrogen production rate is directly proportional to the SO2 production rate.