ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Charles W. Forsberg
Nuclear Technology | Volume 166 | Number 1 | April 2009 | Pages 18-26
Technical Paper | Special Issue on Nuclear Hydrogen Production, Control, and Management | doi.org/10.13182/NT09-A6964
Articles are hosted by Taylor and Francis Online.
The Hydrogen Intermediate and Peak Electrical System (HIPES) is a new proposed system that uses low-cost off-peak electricity or base-load nuclear energy to economically produce electricity for peak electrical demand, spinning reserve, and power regulation. HIPES has three major subsystems. Hydrogen and oxygen are produced from water using (a) off-peak electricity by methods such as electrolysis or (b) steady-state hydrogen production methods such as nuclear-hydrogen production with thermochemical cycles. The two gases are stored in large underground facilities using the same technologies used for the seasonal storage of natural gas. Peak electricity is produced by an advanced steam turbine with a burner that combines stored H2, O2, and water to produce high-pressure 1500°C steam, which serves as feed to a special high-temperature steam turbine with actively cooled blades. The steam plant efficiency is ~70%. HIPES power outputs can be rapidly varied to match changing electricity demand because the slow-response component of a traditional steam system (the boiler) has been eliminated. The economics are based on (a) the low cost of large-scale underground gas storage, (b) a low-capital-cost efficient method to convert hydrogen and oxygen into peak electricity (no steam boiler), and (c) the large differences in the prices of base-load and off-peak power relative to the premium prices paid for peak power production, spinning reserve, and power regulation. The technology, markets, and economics are described.