ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Alexandra Akins, Derek Kultgen, Xu Wu, Alexander Heifetz
Nuclear Technology | Volume 211 | Number 12 | December 2025 | Pages 3004-3017
Research Article | doi.org/10.1080/00295450.2025.2518613
Articles are hosted by Taylor and Francis Online.
Advanced high-temperature fluid reactors, such as sodium-cooled fast reactors (SFRs) and molten salt–cooled reactors (MSCRs), require coolant purification systems to prevent fluid contamination and local freezing that can lead to plugging. Liquid sodium purification can be achieved with a cold trap, where the sodium temperature is reduced to a near-freezing point to precipitate out impurities. Automation of monitoring of the cold trap performance with machine learning algorithms can aid in early detection of incipient anomalies. An efficient approach to loss-of-coolant–type anomaly detection in a cold trap monitored with more than two dozen thermal-hydraulic sensors consists of a long short-term memory (LSTM) autoencoder. This work develops the uncertainty quantification of the LSTM autoencoder performance for cold trap anomaly detection using the Monte Carlo (MC) dropout method. The MC dropout methodology creates a distribution of sister distributions that all slightly differ from each other because of random neurons being turned off for testing. The variances of the sister network distributions are used to make an uncertainty interval. Our analysis shows that the uncertainty in the autoencoder performance is largest near the peak of the anomaly signal. Using the MC dropout method, we investigate the uncertainty in the anomaly detection with missing sensor inputs. This capability allows the reactor operator to evaluate resilience of the anomaly detection system and to make informed decisions about continuity of operation in the event of sensor failure.