ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Brunilda Muçogllava, Selcen U. Duran, M. Bilge Demirköz
Nuclear Technology | Volume 211 | Number 11 | November 2025 | Pages 2870-2879
Note | doi.org/10.1080/00295450.2025.2461428
Articles are hosted by Taylor and Francis Online.
Proton–stainless steel interactions occurring at the first collimator of the Middle East Technical University Defocusing Beamline generate high-energy secondary particles like neutrons (23 MeV), gamma rays (14 MeV), and electrons and positrons ( 7.0 MeV) with particle fluxes between 107 to 109 particles/(cm2∙s). A neutron collimating system aiming to reduce most of these secondaries and obtain a moderate flux of fast neutrons was designed and constructed. The collimating structure consists of a moderating unit aiming to shield the outside of the system, a neutron funnel to redirect the neutrons to the desired beam geometry, and a testing station. This system funnels neutrons into a 10-cm-diameter nonuniform beam and directs them to a testing area capable of hosting up to six samples of 7.3-cm diameter and up to 3.0-cm thickness. Simulation results show neutrons with energies up to 5.0 MeV and a flux of 106 neutrons/(cm2∙s) at the testing unit, while the experimental result gives a neutron dose rate of about 22 mSv/h.