ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Brunilda Muçogllava, Selcen U. Duran, M. Bilge Demirköz
Nuclear Technology | Volume 211 | Number 11 | November 2025 | Pages 2870-2879
Note | doi.org/10.1080/00295450.2025.2461428
Articles are hosted by Taylor and Francis Online.
Proton–stainless steel interactions occurring at the first collimator of the Middle East Technical University Defocusing Beamline generate high-energy secondary particles like neutrons (23 MeV), gamma rays (14 MeV), and electrons and positrons ( 7.0 MeV) with particle fluxes between 107 to 109 particles/(cm2∙s). A neutron collimating system aiming to reduce most of these secondaries and obtain a moderate flux of fast neutrons was designed and constructed. The collimating structure consists of a moderating unit aiming to shield the outside of the system, a neutron funnel to redirect the neutrons to the desired beam geometry, and a testing station. This system funnels neutrons into a 10-cm-diameter nonuniform beam and directs them to a testing area capable of hosting up to six samples of 7.3-cm diameter and up to 3.0-cm thickness. Simulation results show neutrons with energies up to 5.0 MeV and a flux of 106 neutrons/(cm2∙s) at the testing unit, while the experimental result gives a neutron dose rate of about 22 mSv/h.