ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
ANS 2026 election is open
The 2026 American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect as well as six board members (five U.S. directors and one non-U.S. director). Completed ballots must be submitted by 12:00 p.m. (CDT) on Wednesday, April 1, 2026.
All ANS members have been emailed a unique access key from third-party election vendor ElectionBuddy. Each member can use their access key to vote once, and each vote will remain anonymous. Visit secure.electionbuddy.com/ballot to vote.
Stephen A. Ajah, Lateef Akanji, Jefferson Gomes
Nuclear Technology | Volume 211 | Number 11 | November 2025 | Pages 2668-2698
Review Article | doi.org/10.1080/00295450.2025.2454104
Articles are hosted by Taylor and Francis Online.
Severe accidents (SAs) continue to pose a significant threat to the nuclear industry despite advancements in reactor design. This paper provides a comprehensive review of research on SA prediction, focusing on the limitations of traditional modeling approaches and the potential of machine learning (ML). We analyze the evolution of nuclear reactor generations, considering economic viability, safety, lifespan, and fuel reprocessing. Existing predictive models, primarily based on experimental data and computational fluid dynamics (CFD) tools like RELAP5 and MELCOR, have been effective for certain conditions but struggle to accurately capture complex multiphase flow phenomena during SAs.
To address these challenges, we explore interface capturing techniques and higher-order multiphase models as promising avenues for enhancing CFD simulations. Additionally, we survey the role of ML in improving model accuracy, particularly for predicting flow parameters during phase changes.
This review highlights the need for integrated models combining CFD, interface capturing, and ML techniques to achieve robust SA prediction. By potentially incorporating ML into computational multifluid dynamics frameworks, we aim to enhance numerical stability, computational efficiency, and predictive capabilities for multicomponent systems. Ultimately, this research contributes to the development of advanced tools for SA prevention and mitigation, improving nuclear reactor safety.