ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Stephen A. Ajah, Lateef Akanji, Jefferson Gomes
Nuclear Technology | Volume 211 | Number 11 | November 2025 | Pages 2668-2698
Review Article | doi.org/10.1080/00295450.2025.2454104
Articles are hosted by Taylor and Francis Online.
Severe accidents (SAs) continue to pose a significant threat to the nuclear industry despite advancements in reactor design. This paper provides a comprehensive review of research on SA prediction, focusing on the limitations of traditional modeling approaches and the potential of machine learning (ML). We analyze the evolution of nuclear reactor generations, considering economic viability, safety, lifespan, and fuel reprocessing. Existing predictive models, primarily based on experimental data and computational fluid dynamics (CFD) tools like RELAP5 and MELCOR, have been effective for certain conditions but struggle to accurately capture complex multiphase flow phenomena during SAs.
To address these challenges, we explore interface capturing techniques and higher-order multiphase models as promising avenues for enhancing CFD simulations. Additionally, we survey the role of ML in improving model accuracy, particularly for predicting flow parameters during phase changes.
This review highlights the need for integrated models combining CFD, interface capturing, and ML techniques to achieve robust SA prediction. By potentially incorporating ML into computational multifluid dynamics frameworks, we aim to enhance numerical stability, computational efficiency, and predictive capabilities for multicomponent systems. Ultimately, this research contributes to the development of advanced tools for SA prevention and mitigation, improving nuclear reactor safety.