ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Stephen A. Ajah, Lateef Akanji, Jefferson Gomes
Nuclear Technology | Volume 211 | Number 11 | November 2025 | Pages 2668-2698
Review Article | doi.org/10.1080/00295450.2025.2454104
Articles are hosted by Taylor and Francis Online.
Severe accidents (SAs) continue to pose a significant threat to the nuclear industry despite advancements in reactor design. This paper provides a comprehensive review of research on SA prediction, focusing on the limitations of traditional modeling approaches and the potential of machine learning (ML). We analyze the evolution of nuclear reactor generations, considering economic viability, safety, lifespan, and fuel reprocessing. Existing predictive models, primarily based on experimental data and computational fluid dynamics (CFD) tools like RELAP5 and MELCOR, have been effective for certain conditions but struggle to accurately capture complex multiphase flow phenomena during SAs.
To address these challenges, we explore interface capturing techniques and higher-order multiphase models as promising avenues for enhancing CFD simulations. Additionally, we survey the role of ML in improving model accuracy, particularly for predicting flow parameters during phase changes.
This review highlights the need for integrated models combining CFD, interface capturing, and ML techniques to achieve robust SA prediction. By potentially incorporating ML into computational multifluid dynamics frameworks, we aim to enhance numerical stability, computational efficiency, and predictive capabilities for multicomponent systems. Ultimately, this research contributes to the development of advanced tools for SA prevention and mitigation, improving nuclear reactor safety.