ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Emil Helmryd Grosfilley, Gustav Robertson, Jerol Soibam, Jean-Marie Le Corre
Nuclear Technology | Volume 211 | Number 10 | October 2025 | Pages 2640-2654
Research Article | doi.org/10.1080/00295450.2024.2380580
Articles are hosted by Taylor and Francis Online.
A unifying and accurate model to predict critical heat flux (CHF) over a wide range of conditions has been elusive since wall boiling research emerged. With the release of the experimental data utilized in the development of the 2006 Groeneveld CHF lookup table (LUT), by far the most extensive public CHF database available to date (nearly 25 000 data points), the development of data-driven prediction models over a large parameter space in simple geometry (vertical, uniformly heated round tubes) can be achieved. Furthermore, the popularization of machine learning techniques to solve regression problems has led to more advanced tools for analyzing large and complex databases.
This work compares three machine learning algorithms to predict the CHF database. For each selected regression algorithm (ν-Support vector, Gaussian process, and neural network), a set of optimized hyperparameters is applied. Among the investigated algorithms, the neural network emerges as the most effective, achieving a CHF predicted/measured factor standard deviation of 12.3%, three times less than that of the LUT. In comparison, the Gaussian process regression and the ν-support vector regression achieve a standard deviation of 17.7%, about two times lower than the LUT. Hence, all considered algorithms significantly outperform the LUT prediction performance. The neural network model and training methodology are designed to prevent overfitting, which is confirmed by data analyses of the CHF predictions. Finally, future development directions (including data coverage, transfer learning, and uncertainty quantification) are discussed.