ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Emil Helmryd Grosfilley, Gustav Robertson, Jerol Soibam, Jean-Marie Le Corre
Nuclear Technology | Volume 211 | Number 10 | October 2025 | Pages 2640-2654
Research Article | doi.org/10.1080/00295450.2024.2380580
Articles are hosted by Taylor and Francis Online.
A unifying and accurate model to predict critical heat flux (CHF) over a wide range of conditions has been elusive since wall boiling research emerged. With the release of the experimental data utilized in the development of the 2006 Groeneveld CHF lookup table (LUT), by far the most extensive public CHF database available to date (nearly 25 000 data points), the development of data-driven prediction models over a large parameter space in simple geometry (vertical, uniformly heated round tubes) can be achieved. Furthermore, the popularization of machine learning techniques to solve regression problems has led to more advanced tools for analyzing large and complex databases.
This work compares three machine learning algorithms to predict the CHF database. For each selected regression algorithm (ν-Support vector, Gaussian process, and neural network), a set of optimized hyperparameters is applied. Among the investigated algorithms, the neural network emerges as the most effective, achieving a CHF predicted/measured factor standard deviation of 12.3%, three times less than that of the LUT. In comparison, the Gaussian process regression and the ν-support vector regression achieve a standard deviation of 17.7%, about two times lower than the LUT. Hence, all considered algorithms significantly outperform the LUT prediction performance. The neural network model and training methodology are designed to prevent overfitting, which is confirmed by data analyses of the CHF predictions. Finally, future development directions (including data coverage, transfer learning, and uncertainty quantification) are discussed.