ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
ANS 2026 election is open
The 2026 American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect as well as six board members (five U.S. directors and one non-U.S. director). Completed ballots must be submitted by 12:00 p.m. (CDT) on Wednesday, April 1, 2026.
All ANS members have been emailed a unique access key from third-party election vendor ElectionBuddy. Each member can use their access key to vote once, and each vote will remain anonymous. Visit secure.electionbuddy.com/ballot to vote.
Cesare Frepoli, Robert P. Martin, Curtis L. Smith, Kurt G. Vedros
Nuclear Technology | Volume 211 | Number 10 | October 2025 | Pages 2508-2522
Research Article | doi.org/10.1080/00295450.2024.2397613
Articles are hosted by Taylor and Francis Online.
Several advanced reactor designs are now under active development in the United States and elsewhere, promising sustainable solutions to the growing world energy needs. The designs currently being considered are quite diverse and different from the more established light water reactor technology that has dominated the operating commercial nuclear landscape. While advanced reactor concepts were first explored in the dawn of the nuclear age, they are now being reconsidered under the light of modern needs, and specifically, for their flexible operating conditions and inherent safety characteristics.
In response, the U.S. Nuclear Regulatory Commission staff is moving forward with development of 10 CFR Part 53 rulemaking, which is a more risk-informed, technology-agnostic framework for licensing and regulating such new designs. The nuclear industry response to this regulatory initiative resulted in the technical report by the Nuclear Energy Institute, NEI 18-04 Revision 1, which provides an implementation roadmap of the risk-informed approach when defining the safety case for a new plant design. The implementation of this safety case may be a nontrivial exercise for an actual reactor design.
This paper provides a demonstration of performing such an analysis for a representative advanced reactor. Public information from the General Atomics high-temperature gas reactor design was considered in this demonstration. The analysis workflow was facilitated with the FPoliSolutions’ proprietary Risk-Informed System Engineering (RISE) digital platform, a product that was presented in previous publications. RISE is one application of FPoli’s enterprise digital platform, which was created to facilitate orchestration of complex workflows leveraging recent technologies developed at national laboratories, such as Idaho National Laboratory’s RAVEN and EMRALD frameworks. The analysis described in the paper includes the selection and classifications of events, the integration of probabilistic risk analysis artifacts, and event modeling simulations for consequence evaluations.
The results are then used for system, structures, and components safety classification and a synthesis of the safety case for the design in line with the frequency-consequence targets presented in NEI 18-04. The purpose of the analysis, as framed in RISE, is to readily produce outputs and views that can aid users and regulators in making risk-informed decisions to demonstrate their plant safety case.