ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Ye Yeong Park, In Cheol Bang
Nuclear Technology | Volume 211 | Number 10 | October 2025 | Pages 2470-2489
Research Article | doi.org/10.1080/00295450.2024.2372509
Articles are hosted by Taylor and Francis Online.
Incorporating heat pipes into passive cooling systems in nuclear reactors offers the benefits of passive operation without external power, a simple design, and high thermal capacity. Accurate thermal performance prediction of the heat pipe is crucial for ensuring safe reactor design and operation. Prior studies on nuclear reactor systems utilizing heat pipes have focused on thermosyphons, which operate by gravity. However, to expand the range of heat pipe applications in reactor systems, experimental investigations of large-scale heat pipes driven by capillary pumping force are required.
In this study, a water heat pipe with a 25.4-mm diameter and 4-m length was manufactured to provide thermal experimental results under extreme conditions, such as system rollover or loss-of-cooling accidents. A three-dimensional (3D) printing technique was used to fabricate the high-performance lattice capillary wick structure by combining cubic and diamond lattice structures. The 3D printed wick structure showed 21 to 165 times higher capillarity and enhanced surface properties compared to the screen mesh wick structure. Compared to wickless thermosyphons, the 3D printed wick heat pipe exhibited higher thermal conductivity, stable operation in both vertical and horizontal orientations, and faster startup under extreme conditions.