ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Bronwyn Rempel, Geoffrey S. Gray, Scott J. Ormiston
Nuclear Technology | Volume 211 | Number 10 | October 2025 | Pages 2427-2445
Research Article | doi.org/10.1080/00295450.2024.2410612
Articles are hosted by Taylor and Francis Online.
Steam condensation in the presence of a noncondensable gas is of vital importance for passive cooling containment systems. The noncondensable gas causes a significant reduction in the condensation rate and heat transfer across the containment, which is important for postulated loss-of-coolant accidents in a nuclear reactor.
In this work, computational fluid dynamics models of condensation and the adjacent single-phase steam-air mixture flow are developed for laminar and turbulent flow in vertical channels by two distinct wall condensation modeling approaches using the commercial code STAR-CCM+. The first is the fluid film model available in STAR-CCM+, which solves liquid layer governing equations with connections to the adjacent gas mixture flow. The second is a user-defined wall condensation model that neglects the fluid film and instead accounts for mass, momentum, and heat transfer via user-defined volumetric sink terms adjacent to the cold wall.
The condensation models are assessed by first comparing the calculated results with the numerical solution of laminar flow, solved using a complete two-phase model that solves parabolic equations based on conservation of mass, momentum, energy, and species for each phase. Next, the results of a two-dimensional analysis are compared with COPAIN experiments and existing numerical solutions from three-dimensional analyses. The comparisons include new, detailed results that have not been reported in previous analyses of a COPAIN case. These new results include local field profiles of velocity, temperature, and air mass fraction, and local mass flux.