ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
ANS 2026 election is open
The 2026 American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect as well as six board members (five U.S. directors and one non-U.S. director). Completed ballots must be submitted by 12:00 p.m. (CDT) on Wednesday, April 1, 2026.
All ANS members have been emailed a unique access key from third-party election vendor ElectionBuddy. Each member can use their access key to vote once, and each vote will remain anonymous. Visit secure.electionbuddy.com/ballot to vote.
Cheng-Kai Tai, Haomin Yuan, Elia Merzari, Igor A. Bolotnov
Nuclear Technology | Volume 211 | Number 10 | October 2025 | Pages 2386-2403
Research Article | doi.org/10.1080/00295450.2024.2382621
Articles are hosted by Taylor and Francis Online.
Density stratification in a large enclosure is a crucial phenomenon to heat transfer and sustainable passive heat removal of a sodium fast reactor during reactivity transients. However, engineering turbulence models were identified to have unsatisfactory performance in predicting propagation of a stratified front. Yet, the scarcity of high-resolution data for stratification hampers the development of models. To explor e applications of leveraging direct numerical simulation (DNS) data to support turbulence model development, this work conducted DNS using NekRS to study a long stratification transient in the High-Resolution Jet (HiRJET) experimental facility. This work considers an experiment run where light fluid is injected into a tank containing a denser fluid with a relative density difference of 1.5%. Formation of the stratified layer is identified as impingement of the buoyant jet promoting mixing of the two fluids. Based on the transient statistics, transport of the concentration can be characterized by regions with dominating effects of turbulent mixing, buoyant dissipation, and molecular diffusion, respectively, as moving away from the elevation of jet impingement. Concentration near the stratified front also exhibits oscillation at Brunt-Väisälä frequency. Preliminary validation of the simulation showed encouraging agreement of the concentration distribution with the reference experiment.