ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Jin Li, Thomas Downar, Volkan Seker, Dan O’Grady, Rui Hu, Nader Satvat, Shai Kinast
Nuclear Technology | Volume 211 | Number 9 | September 2025 | Pages 2189-2205
Research Article | doi.org/10.1080/00295450.2024.2381282
Articles are hosted by Taylor and Francis Online.
The fluoride-salt-cooled high-temperature reactor (FHR) is one of the advanced reactors that has been attracting considerable interest from both the research community and the nuclear industry. To help facilitate the nuclear community’s familiarity with the FHR, Kairos Power has developed a generic FHR (gFHR) benchmark. In the research performed here, this benchmark was used to assess innovative modeling methods that combine stochastic and deterministic computer codes to perform the design and analysis of the gFHR. The Monte Carlo code Serpent 2 was used to generate few-group cross sections that were then used in the neutron diffusion and thermal-fluids code AGREE to perform full-core neutronics and thermal-fluids steady-state and transient core analysis. The Argonne National Laboratory code SAM was then used to model the gFHR system and to simulate the load-follow operation of the gFHR.