ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Jin Li, Thomas Downar, Volkan Seker, Dan O’Grady, Rui Hu, Nader Satvat, Shai Kinast
Nuclear Technology | Volume 211 | Number 9 | September 2025 | Pages 2189-2205
Research Article | doi.org/10.1080/00295450.2024.2381282
Articles are hosted by Taylor and Francis Online.
The fluoride-salt-cooled high-temperature reactor (FHR) is one of the advanced reactors that has been attracting considerable interest from both the research community and the nuclear industry. To help facilitate the nuclear community’s familiarity with the FHR, Kairos Power has developed a generic FHR (gFHR) benchmark. In the research performed here, this benchmark was used to assess innovative modeling methods that combine stochastic and deterministic computer codes to perform the design and analysis of the gFHR. The Monte Carlo code Serpent 2 was used to generate few-group cross sections that were then used in the neutron diffusion and thermal-fluids code AGREE to perform full-core neutronics and thermal-fluids steady-state and transient core analysis. The Argonne National Laboratory code SAM was then used to model the gFHR system and to simulate the load-follow operation of the gFHR.