ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Ling Zou, Quan Zhou, Dan O’Grady, Rui Hu, Alex Heald, Haihua Zhao
Nuclear Technology | Volume 211 | Number 9 | September 2025 | Pages 1986-2002
Research Article | doi.org/10.1080/00295450.2024.2377522
Articles are hosted by Taylor and Francis Online.
This work presents the development and implementation of the one-dimensional freezing model in system analysis code SAM (System Analysis Module), code verification using analytical solutions, and code demonstration of a postulated overcooling transient for a fluoride salt–cooled high-temperature reactor (FHR) system and safety analysis applications. This paper first summarizes the freezing model, finite element numerical method, and special numerical treatment for handling transitions between single- and two-phase conditions. Analytical solutions are derived for two cases, with and without solid walls, for code verification purposes. As expected, the numerical results predicted by SAM agree very well with the analytical solution. A code demonstration is then performed on a postulated protected overcooling transient event of a generic reference pebble bed FHR design. The code was found to successfully predict salt freezing during such a postulated event. However, due to the lack of salt freezing testing data, code validation is not performed in this work, but will be pursued in future studies when such data become available.