ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Huihua Yang, Qiyun Cheng, Ling Zou, Rui Hu, Wei Ji
Nuclear Technology | Volume 211 | Number 9 | September 2025 | Pages 1960-1985
Research Article | doi.org/10.1080/00295450.2024.2421678
Articles are hosted by Taylor and Francis Online.
With the increased interest in the design and deployment of advanced reactor systems, a desire for simulation tools supporting system analyses of reactor operation and safety is rising. Molten salt reactors (MSRs), one of the advanced reactor systems, utilize liquid-fused salt fuel as both coolant and fuel. During operation, MSRs generate insoluble fission products, including noble metals and gases. The buildup of these species in the fuel salt presents safety concerns, as they may deposit on surfaces of critical components and produce excessive decay heat, causing the failure of system components. The timely removal of these noble metals and gases would ensure the safe operation of the reactor system. The dynamic nature of salt fuel systems, involving the generation, decay, deposition, and extraction of noble metals and gases, calls for robust species transport models to facilitate system analysis and monitoring and the design of efficient species removal components. This paper concentrates on the development of a computational framework for species transport consisting of multiphase transport model formulation, mass transfer between phases, numerical implementation in the MOOSE environment, verification through the method of manufacture solutions, and validation against experimental data from the Molten Salt Reactor Experiment. Integrating this framework into the System Analysis Module (SAM) code further enhances SAM’s capabilities for advanced reactor analysis in the future.