ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
NECX debut: Shaping the next era of energy
The sold-out inaugural Nuclear Energy Conference & Expo (NECX) got off to a roaring start in Atlanta, Ga., Tuesday morning with an opening plenary that was a live highlight reel discussing the latest industry achievements.
Starting with a lively promo video that left the audience amped up for Entergy’s CEO and NEI chair Drew Marsh, who welcomed everyone to the event, hosted jointly by the American Nuclear Society and the Nuclear Energy Institute. He spoke to a full house of more than 1,300 attendees, promising a blend of science, technology, policy, and advocacy centered around the future of nuclear energy.
Robert K. Salko, Travis Mui, Ling Zou, Rui Hu
Nuclear Technology | Volume 211 | Number 9 | September 2025 | Pages 1937-1959
Research Article | doi.org/10.1080/00295450.2024.2370189
Articles are hosted by Taylor and Francis Online.
The advanced thermal-hydraulic system code, System Analysis Module (SAM), was originally developed for the modeling of single-phase flow in advanced reactors. It has since been expanded to include a four-equation drift flux model for the modeling of two-phase flows containing a noncondensable gas. The model was expanded to support the modeling of molten salt reactor (MSR) designs in which the fuel is directly dissolved in the circulating coolant. These designs have shown that circulating gas bubbles can play an important role in the management of fission products and the operational behavior of the reactor. A drift flux model was implemented to more accurately capture the localized behavior of the void in the core and its impact on the mass transfer of fission products.
A thorough assessment of the new model was performed by developing a verification and validation test suite. Verification problems were designed to test all major terms in the new governing equations. The new model converged to the correct solution at the expected order of accuracy for all verification cases. The validation cases included a wide range of flow and void conditions in different pipe geometries. Although higher void experiments show a slight underprediction of void by the drift flux model, experiments that aim to reproduce Molten Salt Reactor Experiment (MSRE) experimental conditions show good agreement with the model.
The gas transport model was activated for a SAM model of the MSRE to demonstrate that it can be used in a more complex model. This gas transport model will be used along with an interfacial area transport equation being implemented in SAM for the prediction of mass transport behavior in MSR conditions.