ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
NECX debut: Shaping the next era of energy
The sold-out inaugural Nuclear Energy Conference & Expo (NECX) got off to a roaring start in Atlanta, Ga., Tuesday morning with an opening plenary that was a live highlight reel discussing the latest industry achievements.
Starting with a lively promo video that left the audience amped up for Entergy’s CEO and NEI chair Drew Marsh, who welcomed everyone to the event, hosted jointly by the American Nuclear Society and the Nuclear Energy Institute. He spoke to a full house of more than 1,300 attendees, promising a blend of science, technology, policy, and advocacy centered around the future of nuclear energy.
Travis Mui, Rui Hu, Quan Zhou, Thanh Hua, Ling Zou
Nuclear Technology | Volume 211 | Number 9 | September 2025 | Pages 1921-1936
Research Article | doi.org/10.1080/00295450.2025.2503681
Articles are hosted by Taylor and Francis Online.
The SAM code is under development as a modern system-level modeling and simulation tool for advanced non–light water reactor safety analyses, with recent efforts to add capabilities to evaluate radiological source term risks in these novel reactor concepts. By leveraging the established system-level multiphysics thermal-hydraulic models in SAM, a framework for tightly coupled species transport modeling has been integrated into the code for engineering-scale source term evaluation.
This species transport framework was first applied to the simulation of tritium, which is a well-known source term in conventional light water reactors. Tritium poses a unique risk in salt-cooled reactors, especially those with lithium-bearing salts such as the fluoride salt–cooled high-temperature reactor (FHR) concept, as tritium is generated in the salt coolant in significant quantities due to neutron interactions. A compounding factor is the increased mobility of tritium at high temperatures, which is able to permeate through metals while also potentially being retained in graphite pebbles and structures.
Engineering-scale models for the tritium transport pathways in a FHR have been developed using the new species transport framework in SAM. The capabilities are assessed through analytical verification problems and validated with data from a graphite retention experiment. The system-level model is demonstrated by performing an initial estimate of baseline tritium generation and flows in a generic reference SAM FHR model, setting a foundation for future studies of source term transient analysis with the potential for further multiscale and multiphysics integration.