ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Rui Hu, Ling Zou, Daniel O’Grady, Travis Mui, Zhiee Jhia Ooi, Guojun Hu, Eric Cervi, Gang Yang, David Andrs, Alex Lindsay, Cody Permann, Robert Salko, Quan Zhou, Lambert Fick, Alexander Heald, Haihua Zhao
Nuclear Technology | Volume 211 | Number 9 | September 2025 | Pages 1883-1902
Research Article | doi.org/10.1080/00295450.2024.2409601
Articles are hosted by Taylor and Francis Online.
The System Analysis Module (SAM), developed at Argonne National Laboratory and by collaborators at other organizations, is for advanced non–light water reactor safety analysis. SAM aims to provide fast-running, modest-fidelity, whole-plant transient analysis capabilities that are essential for fast-turnaround design scoping and engineering analyses of advanced reactor concepts. To facilitate code development, SAM utilizes the MOOSE object-oriented application framework, its underlying finite element library, and linear and nonlinear solvers to leverage modern advanced software environments and numerical methods. SAM aims to solve tightly coupled physical phenomena, including fission reaction, heat transfer, fluid dynamics, and thermal-mechanical responses in advanced reactor structures, systems, and components with high accuracy and efficiency.
This paper gives an overview of the SAM code development, including goals and functional requirements, physical models, current capabilities, verification and validation, software quality assurance, and examples of simulations for advanced nuclear reactor applications.