ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Yongwei Chen, Yonggang Li, Yongjing Xie, Zuguo Chen, Jiale Li
Nuclear Technology | Volume 211 | Number 8 | August 2025 | Pages 1860-1874
Research Article | doi.org/10.1080/00295450.2024.2431780
Articles are hosted by Taylor and Francis Online.
The instrumentation and control (I&C) equipment in nuclear power plants gradually ages and becomes obsolete with increased operation time. Its performance deteriorates, and the probability of its failure also increases gradually. The failure of I&C equipment may directly lead to the degradation of the control or protection functions, reducing the reliability and safety margin required by the design. This will hurt the safety and stable operation of nuclear power plants. Therefore, an aging I&C management/replacement strategy is necessary to control and minimize this problem.
In this regard, this paper establishes a module lifetime evaluation model described by a composite probability density function for modules composed of multiple components. On this basis, we have developed a multi-objective aging replacement optimization model aimed at high reliability, economy, and feasibility, and propose an equipment aging replacement optimization calculation method based on the linear-weighted discrete state transition algorithm. The procedure is verified by the application of data from nuclear power engineering. The results show that the proposed aging replacement strategy and method can significantly reduce computational difficulty, improve equipment reliability, and lower aging replacement costs.