ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Tatiana Siaraferas, Yves Robert, Massimiliano Fratoni
Nuclear Technology | Volume 211 | Number 8 | August 2025 | Pages 1774-1808
Research Article | doi.org/10.1080/00295450.2024.2430120
Articles are hosted by Taylor and Francis Online.
Verification and validation of the Monte Carlo particle transport code Serpent 2 depletion calculation capabilities in the context of tristructural isotropic (TRISO) particles was performed against available data from the second Advanced Gas Reactor irradiation campaign (AGR-2), which was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory. The AGR-2 test train contained both uranium oxycarbide (UCO) and uranium dioxide (UO2) TRISO particles, which were irradiated for 12 ATR power cycles over a period of 3.5 years.
For this study, the AGR-2 test train was reconstructed in full detail using Serpent 2, and depletion calculations replicating the experimental irradiation conditions were performed. The fast neutron fluence and AGR-2 fuel burnup resulting from the depletion calculations for the 12 irradiation cycles are compared with the corresponding reported MCNP-computed data. The total AGR-2 fuel burnup accumulated by the end of the AGR-2 test train irradiation is also compared with available experimental data. The fission product inventory at the end of the AGR-2 irradiation obtained from the Serpent 2 depletion calculations is compared with the reported computational data.
The Serpent 2 results for the fast neutron fluence (En > 0.18 MeV) differ on average by 5.10% from the MCNP-computed results. Similarly, the Serpent 2 model underpredicts the AGR-2 fuel burnup at the end of the irradiation by 5.13%, on average for all capsules, when compared with the MCNP-computed results and by 2.01% when compared with the experimental results. Last, the fission product inventory calculated by Serpent 2 is underpredicted by 5.27%, on average for all capsules, in comparison with the reference MCNP data. Serpent 2 is generally in satisfactory agreement with the AGR-2 reported values. These results provide confidence in the performance of Serpent 2 depletion calculations for TRISO fuel particles.