ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
ANS 2026 election is open
The 2026 American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect as well as six board members (five U.S. directors and one non-U.S. director). Completed ballots must be submitted by 12:00 p.m. (CDT) on Wednesday, April 1, 2026.
All ANS members have been emailed a unique access key from third-party election vendor ElectionBuddy. Each member can use their access key to vote once, and each vote will remain anonymous. Visit secure.electionbuddy.com/ballot to vote.
Assil Halimi, Koroush Shirvan
Nuclear Technology | Volume 211 | Number 8 | August 2025 | Pages 1723-1746
Research Article | doi.org/10.1080/00295450.2024.2426416
Articles are hosted by Taylor and Francis Online.
Small pressurized water reactors can feature boron-free operation, natural circulation mode, reduced-height assemblies, and/or long refueling cycles. This paper attempts to explore core design optimization for each of these design evolutions. In consequence, five core design layouts are developed incorporating boron-free operation with continuous control rod insertion, natural circulation with low burnup/low power density design, natural circulation with high burnup/low power density design, forced circulation with standard core power density design, and forced circulation with high power density design. These cores’ performance is compared to a standard four-loop pressurized water reactor. The design process aims to improve the fuel cycle cost under safety constraints through core design optimization using the CASMO4E/SIMULATE3 reactor physics codes and the FRAPCON4.1 fuel performance assessment tool. Core modeling assumes standard 17×17 PWR fuel assemblies loaded with low enriched uranium up to 5 wt% or low enriched uranium plus (i.e. below 10 wt% enrichment) pellets with gadolinium oxide as the burnable poison. Satisfactory core and fuel performances are obtained for all the designed cores under steady state and considered overpower transients. For low power density operation, long cycle lengths are achieved reaching 2.5-year and 5-year cycles, and peak rod-average burnup is pushed to 83 MWd/kgU. Other cycle lengths are maintained at 18 months. Boron-free operation exhibits the ability to achieve longer cycle lengths at the cost of higher peaking factors leading to high local power and fuel temperatures, which prevents sizable power uprates and is deemed uneconomical. Fuel assembly height reduction allows coolant velocity retrofit, which enables higher core power density without violating the structural integrity of the fuel assembly. As a result, a core power density of 123 kW/L is reached where total cladding hoop strain becomes the limiting parameter.