ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Assil Halimi, Koroush Shirvan
Nuclear Technology | Volume 211 | Number 8 | August 2025 | Pages 1723-1746
Research Article | doi.org/10.1080/00295450.2024.2426416
Articles are hosted by Taylor and Francis Online.
Small pressurized water reactors can feature boron-free operation, natural circulation mode, reduced-height assemblies, and/or long refueling cycles. This paper attempts to explore core design optimization for each of these design evolutions. In consequence, five core design layouts are developed incorporating boron-free operation with continuous control rod insertion, natural circulation with low burnup/low power density design, natural circulation with high burnup/low power density design, forced circulation with standard core power density design, and forced circulation with high power density design. These cores’ performance is compared to a standard four-loop pressurized water reactor. The design process aims to improve the fuel cycle cost under safety constraints through core design optimization using the CASMO4E/SIMULATE3 reactor physics codes and the FRAPCON4.1 fuel performance assessment tool. Core modeling assumes standard 17×17 PWR fuel assemblies loaded with low enriched uranium up to 5 wt% or low enriched uranium plus (i.e. below 10 wt% enrichment) pellets with gadolinium oxide as the burnable poison. Satisfactory core and fuel performances are obtained for all the designed cores under steady state and considered overpower transients. For low power density operation, long cycle lengths are achieved reaching 2.5-year and 5-year cycles, and peak rod-average burnup is pushed to 83 MWd/kgU. Other cycle lengths are maintained at 18 months. Boron-free operation exhibits the ability to achieve longer cycle lengths at the cost of higher peaking factors leading to high local power and fuel temperatures, which prevents sizable power uprates and is deemed uneconomical. Fuel assembly height reduction allows coolant velocity retrofit, which enables higher core power density without violating the structural integrity of the fuel assembly. As a result, a core power density of 123 kW/L is reached where total cladding hoop strain becomes the limiting parameter.