ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Lauryn K. Reyes, Mohammad Umar Farooq Khan, Ryan E. Gordon, Stephen S. Raiman
Nuclear Technology | Volume 211 | Number 8 | August 2025 | Pages 1619-1624
Research Article | doi.org/10.1080/00295450.2024.2421690
Articles are hosted by Taylor and Francis Online.
Post-irradiation examination of the Molten Salt Reactor Experiment from the 1970s revealed intergranular cracking of the salt-facing material, Hastelloy-N, from the penetration of fission products, specifically tellurium (Te), into the components. Stainless steel 316H is a candidate salt-facing structural material for future molten salt reactors due to its excellent corrosion, oxidation, and neutron irradiation resistance. Thus, studies are needed to verify if Te may lead to material degradation of salt-facing components made from 316H.
This work examined the behavior of stainless steel 316H in three conditions: as received, heat treated to 800°C for 100 h without Te, and with a highly concentrated Te environment. After exposure, mechanical testing was performed on all samples to reveal the loss of strength and ductility in the Te-exposed samples. Additional analysis of the Te-exposed 316H samples using scanning electron microscopy displayed intergranular embrittlement and energy-dispersive X-ray spectroscopy maps highlighted the infiltration of Te within grain boundary cracks. These results present the need for additional experiments to understand how Te weakens the structural material, especially in molten salt, and to eventually identify the driving mechanism for this observed behavior.