This study investigates the potential of a W8Ni3Cu alloy as a gamma radiation shielding material for transporting highly radioactive substances. The alloy, composed of tungsten (W), nickel (Ni), and copper (Cu), was characterized using X-ray diffraction after sintering, revealing a body-centered-cubic crystal structure with an α-tungsten phase and a secondary γ-nickel-tungsten (Ni17W3) phase. The gamma radiation attenuation coefficients of the alloy were measured using a 60Co source. The results showed linear attenuation coefficients of 0.688 cm-1 for the alloy sintered at 1200°C and 0.488 cm-1 for the alloy sintered at 1300°C. These values are 34% and 53% lower than the reference value of pure tungsten (1.044 cm-1), but they still demonstrate adequate shielding properties for practical use. The findings suggest that the W8Ni3Cu alloy is a promising candidate for fabricating containers for the safe transport of radioactive material.