ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Zixu Xu, Kazuma Aoki, Shingo Tamaki, Sachie Kusaka, Yuuki Chimura, Isao Murata
Nuclear Technology | Volume 211 | Number 7 | July 2025 | Pages 1496-1508
Research Article | doi.org/10.1080/00295450.2024.2410642
Articles are hosted by Taylor and Francis Online.
The treatment field of boron neutron capture therapy (BNCT) is a n-γ mixed field. In the Osaka University BNCT project, a material-filtered radio-photoluminescence glass dosimeter (RPLGD) was proposed for the simultaneous measurement of neutron and gamma-ray doses. In this study, to validate the material-filtered RPLGD, various types of n-γ mixed fields are designed by irradiating different moderator assemblies with a D-D neutron source at the OKTAVIAN facility, Osaka University, Japan. The n-γ mixed fields are classified into fast neutron–, epithermal neutron–, or thermal neutron–dominated fields and a gamma-ray-only field with the specific characteristics as follows: (1) the dose ratios of gamma ray to neutron are 1.0% to 977.0% for the fast neutron–dominated field, 5.0% to 921.1% for the epithermal neutron–dominated field, 0.7% to 946.3% for the thermal neutron–dominated field, and 11880.6% for the gamma-ray-only field; (2) the proportions of fast, epithermal, and thermal neutron doses to total neutron dose are 98.4% to 100.0% for the fast neutron–dominated field, 74.0% to 85.4% for the epithermal neutron–dominated field, and 90.1% to 90.8% for the thermal neutron–dominated field, respectively; and (3) the maximum gamma-ray energy is up to 12 MeV.