ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Zixu Xu, Kazuma Aoki, Shingo Tamaki, Sachie Kusaka, Yuuki Chimura, Isao Murata
Nuclear Technology | Volume 211 | Number 7 | July 2025 | Pages 1496-1508
Research Article | doi.org/10.1080/00295450.2024.2410642
Articles are hosted by Taylor and Francis Online.
The treatment field of boron neutron capture therapy (BNCT) is a n-γ mixed field. In the Osaka University BNCT project, a material-filtered radio-photoluminescence glass dosimeter (RPLGD) was proposed for the simultaneous measurement of neutron and gamma-ray doses. In this study, to validate the material-filtered RPLGD, various types of n-γ mixed fields are designed by irradiating different moderator assemblies with a D-D neutron source at the OKTAVIAN facility, Osaka University, Japan. The n-γ mixed fields are classified into fast neutron–, epithermal neutron–, or thermal neutron–dominated fields and a gamma-ray-only field with the specific characteristics as follows: (1) the dose ratios of gamma ray to neutron are 1.0% to 977.0% for the fast neutron–dominated field, 5.0% to 921.1% for the epithermal neutron–dominated field, 0.7% to 946.3% for the thermal neutron–dominated field, and 11880.6% for the gamma-ray-only field; (2) the proportions of fast, epithermal, and thermal neutron doses to total neutron dose are 98.4% to 100.0% for the fast neutron–dominated field, 74.0% to 85.4% for the epithermal neutron–dominated field, and 90.1% to 90.8% for the thermal neutron–dominated field, respectively; and (3) the maximum gamma-ray energy is up to 12 MeV.