ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
On North Carolina's ratification of Senate Bill 266
I have been a North Carolinian for 62 years and involved in the state’s nuclear energy industry from my high school days to today. I have seen firsthand how North Carolina has flourished. This growth has been due to the state’s enterprising people and strong leaders. Clean, competitive, and always-on nuclear power has also played an important role.
Yelyn Ahn, Hee Sang Yoo, Namjae Choi, Eung Soo Kim
Nuclear Technology | Volume 211 | Number 6 | June 2025 | Pages 1316-1336
Research Article | doi.org/10.1080/00295450.2024.2397617
Articles are hosted by Taylor and Francis Online.
The SOPHIA code is a graphical processing unit (GPU)–based smoothed particle hydrodynamics (SPH) framework for fundamental nuclear thermal-hydraulic and safety applications developed by Seoul National University. Focusing on particle-based SPH methods, the SOPHIA code provides capabilities for computational fluid dynamics–level analysis in addressing complex multiphase and multiphysics issues related to severe accidents and reactor safety. Since the SPH method requires high computational cost due to the nature of the particle-based method, the SOPHIA code was parallelized with multiple GPUs. However, using multiple GPUs may cause load imbalance as particles migrate between GPUs, which degrades performance.
In this study, we developed a dynamic load-balancing algorithm to increase computational efficiency by reducing the load imbalance. Additionally, a novel cumulative time comparison approach is proposed as a criterion for adjusting boundaries between GPUs, ensuring low load imbalance. To evaluate the performance of the algorithm, three-dimensional dam-break simulations were conducted. The results demonstrated enhanced computational efficiency and equitable load distribution among GPUs compared to using fixed subdomains. Additionally, the developed algorithm was utilized to analyze the VULCANO VE-U7 experiment, and the results were well aligned with the experimental data. Therefore, the practical applicability of the proposed dynamic load-balancing algorithm in nuclear safety analyses has been confirmed.