ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Jeremy W. King, Craig M. Marianno, Sunil S. Chirayath
Nuclear Technology | Volume 211 | Number 6 | June 2025 | Pages 1282-1307
Research Article | doi.org/10.1080/00295450.2024.2397195
Articles are hosted by Taylor and Francis Online.
Until a long-term solution for the disposal of spent nuclear fuel (SNF) is available, interim dry casks will be increasingly used for the storage of SNF discharged from civilian nuclear power reactors. Dry casks containing commercial SNF may hold several significant quantities of plutonium, so appropriate nuclear material safeguards monitoring is needed. An external remote monitoring system (RMS) has been developed to advance dry cask safeguards monitoring beyond the current method of containment and surveillance used to maintain continuity of knowledge.
In this study, neutron transport simulations of SNF assemblies in a dry cask were performed for several special nuclear material diversion scenarios. The simulations considered various loading patterns and fuel storage durations as long as 100 years. For each fuel loading pattern and storage time investigated, the simulation results were used to calculate the required measurement time to achieve a nondetection probability ≤ 10% for the diversion of any single fuel assembly in the cask. The calculations were performed for false alarm probabilities as low as 0.0001% (or 10−6). A Monte Carlo postprocessing approach was developed to consider the impact on the required measurement time of uncertainty in the burnup of fuel assemblies.
The study found that the external RMS is well suited for the surveillance of SNF in dry cask storage for nuclear safeguards or other purposes and is able to detect the diversion of a single SNF assembly even after decades of storage and with a very low false alarm probability.