ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
ANS 2026 election is open
The 2026 American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect as well as six board members (five U.S. directors and one non-U.S. director). Completed ballots must be submitted by 12:00 p.m. (CDT) on Wednesday, April 1, 2026.
All ANS members have been emailed a unique access key from third-party election vendor ElectionBuddy. Each member can use their access key to vote once, and each vote will remain anonymous. Visit secure.electionbuddy.com/ballot to vote.
Hadi Shahabinejad
Nuclear Technology | Volume 211 | Number 6 | June 2025 | Pages 1246-1255
Research Article | doi.org/10.1080/00295450.2024.2385796
Articles are hosted by Taylor and Francis Online.
Determining the position of interaction is of great interest for gamma-ray imaging in various nuclear applications. Among all gamma-ray detectors, scintillation detectors are commonly exploited for imaging purposes because they can be prepared in large dimensions and are economically affordable. In this work, the general shape of the measured gamma-ray spectra of two long and large-area plastic scintillation detectors are analyzed by artificial neural networks to determine the position of interaction in one and two dimensions (1D and 2D), respectively. The position of interaction was treated as the position of a 137Cs gamma-ray point source on the long and large-area scintillation detectors. Utilizing this method, only one photomultiplier tube (PMT) was used for 1D positioning of interaction in a 4 × 4 × 35-cm3 long plastic detector, while just two PMTs were applied for 2D positioning of interaction in a 50 × 50 × 5-cm3 large-area plastic detector. The position of interaction in the long detector was determined with a resolution of 1 cm and a mean absolute error of less than 1%, while a resolution of 5 cm with a mean absolute error of 13% was achieved for the large-area detector.