ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Hadi Shahabinejad
Nuclear Technology | Volume 211 | Number 6 | June 2025 | Pages 1246-1255
Research Article | doi.org/10.1080/00295450.2024.2385796
Articles are hosted by Taylor and Francis Online.
Determining the position of interaction is of great interest for gamma-ray imaging in various nuclear applications. Among all gamma-ray detectors, scintillation detectors are commonly exploited for imaging purposes because they can be prepared in large dimensions and are economically affordable. In this work, the general shape of the measured gamma-ray spectra of two long and large-area plastic scintillation detectors are analyzed by artificial neural networks to determine the position of interaction in one and two dimensions (1D and 2D), respectively. The position of interaction was treated as the position of a 137Cs gamma-ray point source on the long and large-area scintillation detectors. Utilizing this method, only one photomultiplier tube (PMT) was used for 1D positioning of interaction in a 4 × 4 × 35-cm3 long plastic detector, while just two PMTs were applied for 2D positioning of interaction in a 50 × 50 × 5-cm3 large-area plastic detector. The position of interaction in the long detector was determined with a resolution of 1 cm and a mean absolute error of less than 1%, while a resolution of 5 cm with a mean absolute error of 13% was achieved for the large-area detector.