ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS’s Mentor Match applications open
Applications are now open for the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the inaugural summer cohort, which will take place July 1–August 31, is June 20. The application form can be found here.
Hicham Satti, Otman El Hajjaji, Tarek El Bardouni, Mohamed Mira, Abdelhamid Nouayti
Nuclear Technology | Volume 211 | Number 6 | June 2025 | Pages 1229-1245
Research Article | doi.org/10.1080/00295450.2024.2385795
Articles are hosted by Taylor and Francis Online.
OpenNode, a new open-source Fortran code, enables the simulation of fixed-source reactors. Powered by the nodal expansion method (NEM) and seamless Python integration, OpenNode competes with existing nuclear reactor simulation tools. The fixed-source problem plays a crucial role in radioprotection, providing flux calculations and detailed insights into heating effects and dose rates. Users can define and configure reactor models via a JSON input file, specifying critical parameters like geometry, materials, cross-section data, boundary conditions, and fixed sources.
OpenNode further empowers users with a Python interface for preprocessing and postprocessing, streamlining result analysis. Distinguishing itself from conventional NEM codes, OpenNode supports three-dimensional (3D) Cartesian geometries, facilitating intricate reactor design simulations. Customization options, including mesh sizes, polynomial orders, and calculation modes, enhance precision and efficiency.
In our comprehensive study, we verified OpenNode’s fixed-source mode using the 3D-IAEA reactor, comparing it with the SANM code KOMODO. The results underscore OpenNode’s exceptional accuracy in computing critical parameters, like the effective multiplication factor, power distribution, and nodal flux, within fixed-source reactors. OpenNode stands as a reliable, user-friendly tool poised to advance nuclear reactor simulations.