ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS’s Mentor Match applications open
Applications are now open for the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the inaugural summer cohort, which will take place July 1–August 31, is June 20. The application form can be found here.
Sabrina Kalenko, Yossef Elimelech, Meital Geva, Moshe Bukai, Ron Raz, Shani Gabay, Efi Zemach, Lev Shemer
Nuclear Technology | Volume 211 | Number 6 | June 2025 | Pages 1218-1228
Research Article | doi.org/10.1080/00295450.2024.2385218
Articles are hosted by Taylor and Francis Online.
Detailed information on the flow field structure is often important in numerous industrial applications. Although commercial computational fluid dynamics packages are often capable of providing the required data, they are costly and not universally available. This study was motivated by the operation of an open-pool nuclear research reactor where low radiation levels can be maintained by the installation of a stable purified hot water layer in the upper part of the pool. Maintaining a stable stratification requires a detailed description of the structure of the velocity field. Due to the inherent complications and restrictions of performing accurate measurements in a pool of a real-size operating reactor, either smaller-scale models or oversimplified fluid dynamics computational schemes are routinely used. These methods cannot be validated, and therefore do not necessarily capture the large-scale behavior correctly.
We present an alternative approach to evaluate the velocity components in the pool that is based on the potential flow theory. The model results are validated by measurements using particle image velocimetry. The presented potential theory allows for the quick and easy assessment of the global properties of the fluid velocity distribution within the pool, and in particular, close to its surface. The suggested computational models are flexible and allow for easily varying the spatial dimensions of the flow field. The technique thus can be upscaled, and enables the validation of numerical computations in various fluid mechanical installations where the flow field cannot be resolved.