ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Lei Wu, Jianjun Wang, Zhongning Sun
Nuclear Technology | Volume 211 | Number 6 | June 2025 | Pages 1202-1217
Research Article | doi.org/10.1080/00295450.2024.2385217
Articles are hosted by Taylor and Francis Online.
Submerged steam jet condensation is widely applied in many industrial fields due to its high heat and mass transfer efficiency during the process of direct contact condensation (DCC). The injection of steam into a water pool usually passes through an array of nozzles. It is important to understand the interaction between neighboring jets from different nozzles.
In this paper, two thermal resistance models for DCC are implemented into the computational fluid dynamics code ANSYS Fluent through a user-defined function. The triple steam nozzle cases, in which the inlet pressure ranges from 0.1 to 0.6 MPa, were investigated to understand the interaction of nozzles and their configuration as well as their mechanisms. The distributions of temperature, velocity, volumetric fraction, and pressure fields were analyzed for different cases. Furthermore, the plumes of steam jets always attract each other toward the center of the plumes, and when the inlet pressure is over 0.3 MPa, the mixing of neighboring steam plumes will occur.
In addition, the location where the peak value occurs for the parameters of steam velocity, pressure, and temperature, etc. is getting closer and closer to the center of the flow domain. In addition, the curve of the pressure along the centerline of the nozzle verified the existence of compression and expansion of steam inside the plume.