ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Weishu Wang, Pengzhi Wang, Xiaojie Zheng
Nuclear Technology | Volume 211 | Number 6 | June 2025 | Pages 1185-1201
Research Article | doi.org/10.1080/00295450.2024.2385216
Articles are hosted by Taylor and Francis Online.
The helical cruciform fuel rod is a new fuel design. Its advantages include a large surface area–to-volume ratio, short thermal conductivity distance, and no need for grid spacers. This new fuel rod can effectively improve the hydraulic performance of nuclear reactors. To study the performance of the helical cruciform fuel assembly, the subcooled boiling flow and heat transfer characteristics of this assembly are analyzed in the present work based on computational fluid dynamics. The results indicate that the temperature distribution of the central rod wall surface in the circumferential direction has inhomogeneity and periodicity. The fluid’s temperature and velocity distribution in the cross section are high in the center and low elsewhere, and the fuel rod’s torsional orientation is compatible with the velocity vector’s direction. The vapor volume fraction on the wall of the center rod of the fuel assembly is the highest, and the vapor volume fraction in the mainstream area is relatively low. This work provides a reference for further research on helical cruciform fuel assemblies in the thermal analysis of nuclear reactors.