ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Weishu Wang, Pengzhi Wang, Xiaojie Zheng
Nuclear Technology | Volume 211 | Number 6 | June 2025 | Pages 1185-1201
Research Article | doi.org/10.1080/00295450.2024.2385216
Articles are hosted by Taylor and Francis Online.
The helical cruciform fuel rod is a new fuel design. Its advantages include a large surface area–to-volume ratio, short thermal conductivity distance, and no need for grid spacers. This new fuel rod can effectively improve the hydraulic performance of nuclear reactors. To study the performance of the helical cruciform fuel assembly, the subcooled boiling flow and heat transfer characteristics of this assembly are analyzed in the present work based on computational fluid dynamics. The results indicate that the temperature distribution of the central rod wall surface in the circumferential direction has inhomogeneity and periodicity. The fluid’s temperature and velocity distribution in the cross section are high in the center and low elsewhere, and the fuel rod’s torsional orientation is compatible with the velocity vector’s direction. The vapor volume fraction on the wall of the center rod of the fuel assembly is the highest, and the vapor volume fraction in the mainstream area is relatively low. This work provides a reference for further research on helical cruciform fuel assemblies in the thermal analysis of nuclear reactors.