ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS’s Mentor Match applications open
Applications are now open for the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the inaugural summer cohort, which will take place July 1–August 31, is June 20. The application form can be found here.
Mohamed S. El-Genk, Timothy M. Schriener
Nuclear Technology | Volume 211 | Number 6 | June 2025 | Pages 1124-1143
Research Article | doi.org/10.1080/00295450.2024.2380952
Articles are hosted by Taylor and Francis Online.
This paper investigates the response of the DynMo-CBC space nuclear reactor power system to simulated cybersecurity attacks during a startup transient and demonstrates the effectiveness of the mitigation measures. The system nominally generates 134 kW(electric) continuously for 12 years and does not have a single-point failure in reactor cooling and energy conversion. The reactor core is divided into three hydraulically independent sectors, each having a separate loop with a single shaft, closed Brayton cycle (CBC) turbomachinery unit. A He-Xe gas mixture with a molecular weight of 40 g/mol cools the reactor core sectors and is the CBC unit’s working fluid.
This paper examines the effects of simulated false data injection attacks (FDIAs) on the operation parameters of the power system. The simulated FDIAs decrease or increase the external reactivity insertion beyond nominal to cause spikes in the reactor’s power and temperatures. The results demonstrate the effectiveness of the programmable logic controller regulating the control drums’ drive motors. It mitigates the effects of the simulated FDIAs on the transient operation of the power system and shortens the recovery time after the termination of the simulated cyberattacks.