ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
ANS 2026 election is open
The 2026 American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect as well as six board members (five U.S. directors and one non-U.S. director). Completed ballots must be submitted by 12:00 p.m. (CDT) on Wednesday, April 1, 2026.
All ANS members have been emailed a unique access key from third-party election vendor ElectionBuddy. Each member can use their access key to vote once, and each vote will remain anonymous. Visit secure.electionbuddy.com/ballot to vote.
Mohamed S. El-Genk, Timothy M. Schriener
Nuclear Technology | Volume 211 | Number 6 | June 2025 | Pages 1124-1143
Research Article | doi.org/10.1080/00295450.2024.2380952
Articles are hosted by Taylor and Francis Online.
This paper investigates the response of the DynMo-CBC space nuclear reactor power system to simulated cybersecurity attacks during a startup transient and demonstrates the effectiveness of the mitigation measures. The system nominally generates 134 kW(electric) continuously for 12 years and does not have a single-point failure in reactor cooling and energy conversion. The reactor core is divided into three hydraulically independent sectors, each having a separate loop with a single shaft, closed Brayton cycle (CBC) turbomachinery unit. A He-Xe gas mixture with a molecular weight of 40 g/mol cools the reactor core sectors and is the CBC unit’s working fluid.
This paper examines the effects of simulated false data injection attacks (FDIAs) on the operation parameters of the power system. The simulated FDIAs decrease or increase the external reactivity insertion beyond nominal to cause spikes in the reactor’s power and temperatures. The results demonstrate the effectiveness of the programmable logic controller regulating the control drums’ drive motors. It mitigates the effects of the simulated FDIAs on the transient operation of the power system and shortens the recovery time after the termination of the simulated cyberattacks.