ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Jonathan L. Barthle, Nicholas Meehan, G. Ivan Maldonado, Nicholas R. Brown
Nuclear Technology | Volume 211 | Number 5 | May 2025 | Pages 1080-1091
Research Article | doi.org/10.1080/00295450.2024.2374661
Articles are hosted by Taylor and Francis Online.
The goal of our research is to build upon the capability of RELAP5-3D to model molten lead systems. Molten lead has several potential uses in future advanced reactors, like the lead fast reactor or fusion reactors that utilize dual-coolant lead lithium blankets. This potential for use in future generations of reactors highlights the necessity of developing molten lead models to ensure that they can accurately predict thermohydraulic behavior. We have developed a RELAP5-3D model of the Lobo Lead Loop facility located at the University of New Mexico to verify the accuracy of RELAP5-3D via comparison to existing computational fluid dynamics results and analytical calculations.
It was found that RELAP5-3D accurately calculated radiative heat transfer (within <1%) when compared to theoretical calculations. In addition, pressure drop calculations done in RELAP5-3D demonstrated reasonable agreement within 20 kPa, mostly within ~7% to 15%, when compared to the computational fluid dynamics model of the facility developed by the University of New Mexico, and captured the dependence of pressure drop on flow velocity accurately.
Finally, a hypothetical loss-of-flow transient was imposed on the RELAP5-3D model to determine the feasibility of performing a similar experiment with the Lobo Lead Loop. It was found that such an experiment could be possible, as the RELAP5-3D model indicated that the temperatures of the fluid would not exceed the limiting temperatures of the structure (1658 K) nor the maximum temperature of the electromagnetic pump inlet (823 K). Although there are no experimental data to begin validation, the model will be readily available for future validation studies when the experimental data are generated, especially as the model continues to evolve over time. The results so far demonstrate a promising first step in the verification/validation of the RELAP5-3D model of the Lobo Lead Loop.
The highlights from our research are as follows:
1. The Lobo Lead Loop facility at the University of New Mexico is a good candidate for molten lead system code validation.
2. The Lobo Lead Loop currently has extensive pressure drop results from a high-fidelity computational fluid dynamics model, which offers the opportunity for code-to-code verification of pressure drop in RELAP5-3D.
3. A RELAP5-3D model of the Lobo Lead Loop has been developed to begin verification studies and to prepare for potential validation studies.
4. Development of the model will continue throughout the future to prepare for potential validation studies.