ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Konstantinos Gkouliaras, Vasileios Theos, Stylianos Chatzidakis
Nuclear Technology | Volume 211 | Number 5 | May 2025 | Pages 994-1013
Research Article | doi.org/10.1080/00295450.2024.2368977
Articles are hosted by Taylor and Francis Online.
Recent advancements in reactor designs could offer new revolutionary capabilities, including remote monitoring, increased flexibility, and reduced operation and maintenance costs. Embracing new digital technologies would allow for operational concepts such as semiautonomous or near-autonomous control, and two-way communications for real-time integration with the upcoming smart electric grid. However, such continuous data transmission from and toward a reactor site could potentially introduce new challenges and vulnerabilities, necessitating the prioritization of cybersecurity.
Conventional information technology–based encryption schemes, which rely mostly on computational complexity, have been shown to be vulnerable to cyberattacks. With the advent of quantum computing, practically any asymmetric encryption could be potentially compromised. For example, it has been shown that a RSA-2048 bit key could be broken in 8 h.
To address this challenge, we explore the feasibility of quantum key distribution (QKD) to secure communications. QKD is a physical layer security scheme relying on the laws of quantum mechanics instead of mathematical complexity. QKD promises not only unconditional security but also detection of potential intrusion, as it allows the communication parties to become aware of eavesdropping. To test the proposed hypothesis, a novel simulation tool (NuQKD) was developed to allow for real-time simulation of the BB84 QKD protocol between two remote terminals. A reference scenario is proposed, generic enough to cover various internal and external communication links to a reactor site. Using NuQKD, the internal and external data links were modeled, and receiver operating characteristic curves were calculated for various QKD configurations.
A performance analysis was conducted, demonstrating that QKD can provide adequate secret key rates with low false alarms and has the potential of addressing the nuclear industry’s high standards of confidentiality for distance lengths up to 75 km of fiberoptics. Using a conservative estimation, QKD can provide up to 21.5 kbps of secret key rate for a distance of 1 km and 14.4 kbps at 10 km. The target secret key rates for the corresponding links were estimated at 16 kbps and 80 bps, respectively, based on the analysis of real data from a PUR-1 fully digital reactor. Consequently, QKD is shown to be compatible with existing and future point-to-point reactor communication architectures. These results motivate further study of quantum communications for nuclear reactors.