ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Wei Guo, Bo Shi, Tao Zhang, Zhijiang Wu, Guohua Xiong, Minjun Peng
Nuclear Technology | Volume 211 | Number 5 | May 2025 | Pages 974-993
Research Article | doi.org/10.1080/00295450.2024.2368973
Articles are hosted by Taylor and Francis Online.
The pressure control of once-through steam generator (OTSG) is critical for the operation and safety of small modular reactors. However, the dynamics of the OTSG are quite nonlinear, time varying, and uncertain. Classical control methods face significant challenges in keeping the pressure within acceptable limits in an environment with frequent load variations and multiple sources of external disturbances.
In this paper, a robust control strategy based on active disturbance rejection control (ADRC) optimized by the differential evolution (DE) algorithm is proposed to satisfy the requirements of steam pressure control in an optimum and efficient way. First, a lumped parameter model for the OTSG is developed based on the notion of moving boundaries and linearized to introduce a transfer function model for control design purposes. Then a feedforward cascade control system based on an ADRC controller and a proportional integral differential (PID) controller is designed, which mainly consists of a pressure ADRC controller, a feedwater PID controller, and a feedforward compensator.
To improve the pressure control performance and parameter tuning efficiency of the OTSG control system, a DE algorithm is applied to optimize the ADRC parameters, and the frequency domain and time domain characteristics are compared with particle swarm optimization and the genetic algorithm. Transient simulation experiments were used to evaluate the control performance at 100%, 50%, and 25% power levels, respectively. Moreover, a performance robustness criterion is proposed to demonstrate the robust stability of the ADRC, and the robustness metric is compared with that of the PID control schemes. The simulation results show that DE-ADRC control strategy has better set point tracking, interference rejection, and robust stability than DE-PID control strategy.