ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Kodai Fukuda, Toru Obara, Kenya Suyama
Nuclear Technology | Volume 211 | Number 5 | May 2025 | Pages 963-973
Research Article | doi.org/10.1080/00295450.2024.2368966
Articles are hosted by Taylor and Francis Online.
An application of the boiling water reactor (BWR) to an offshore floating nuclear power plant (OFNP) in Japan is discussed. The BWR-type OFNP has some challenges for practical use, although it has high economic efficiency because of downsizing and simplification. One challenge is understanding reactor kinetics under conditions specific to the marine environment. This study quantitatively clarifies the total and spatial changes in power when the BWR is inclined during regular operation.
Therefore, the TRACE (TRAC/RELAP Advanced Computational Engine) and PARCS (Purdue Advanced Reactor Core Simulator) codes were used to perform a three-dimensional neutronics–thermal-hydraulics–coupled transient analysis. The calculation model is based on Peach Bottom II.
This study clarifies the changing trend in total and local BWR power by inclination with simplified modeling and conditions. The reasons for such changes are discussed based on changes in several thermal-hydraulic parameters. The difference in BWR power against the inclinations is small. Thus, it is implied that the BWR-type OFNP is expected to have a stable power supply capability during natural disasters. However, to confirm the power stability of the BWR reactor under a full range of offshore external conditions, further research is required. A description of additional research needs that would further support the safety case for this reactor design are discussed.