ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Simon Chung, Martin Stewart, Peter Wypych, David Hastie, Andrew Grima, Sam Moricca
Nuclear Technology | Volume 211 | Number 4 | April 2025 | Pages 821-847
Research Article | doi.org/10.1080/00295450.2024.2361195
Articles are hosted by Taylor and Francis Online.
This research presents a discrete element method (DEM) model for simulating the vibratory filling of the Idaho calcine waste simulant into various convoluted hot isostatic pressing canisters. The simulation closely emulates the experimental vibratory powder-filling processes, achieving accurate representations of surface profiles and powder bed heights. Notably, the model underestimates lower fill levels but demonstrates improved accuracy at higher levels due to diminished air influence. Executed on a consumer-grade desktop PC, the DEM model replicates tapped powder bed heights to within millimeters, proving its capability to efficiently simulate commercial-scale bulk material handling processes using standard computing hardware.