ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Pramatha Bhat, Kendall R. Adams, Stephen J. Herring, Brad Kirkwood
Nuclear Technology | Volume 211 | Number 4 | April 2025 | Pages 790-806
Research Article | doi.org/10.1080/00295450.2024.2361185
Articles are hosted by Taylor and Francis Online.
For deep-space propulsion and interplanetary exploration, the centrifugal nuclear thermal rocket (CNTR) has the ability to achieve a very high specific impulse (Isp) metric beyond that of conventional chemical rockets or solid-core nuclear thermal propulsion systems. The high Isp allows the rocket to use less propellant or achieve a higher velocity for shorter transit times. However, the cylindrical containment structure of a CNTR fuel element encounters extreme conditions, as it houses molten uranium at temperatures exceeding 1408 K, leading to challenges such as dissolution, chemical reactions, and thermal stresses that conventional materials struggle to withstand.
This study aims to address this issue by analyzing appropriate materials for constructing the cylindrical containment component. The operating conditions of the annular porous medium that confines the liquid uranium in the centrifugal fuel element are simulated by conducting a comprehensive one-dimensional numerical analysis using a range of candidate porous materials, including Mo, W, zirconium carbide, and silicon carbide. The porous structure facilitates the flow of the hydrogen propellant into the internal molten uranium section, where it gains significant thermal energy while simultaneously cooling the cylinder. The containment cylinder has an internal temperature of 1478.1 K, exceeding the melting point of uranium, while the external gas temperature of the hydrogen propellant is much lower. This temperature difference induces significant thermal stresses in the cylinder.
The porous containment cylinder made from molybdenum was able to maintain elastic deformation throughout the thickness of the cylinder, showcasing its ability to handle these extreme thermal stress conditions. Tungsten, on the other hand, experienced plastic deformation at the cylinder’s edges and elastic deformation through the middle radial locations. In contrast, the stresses experienced by the ceramic materials far exceeded their failure stress values, leading to brittle failure. These findings will help with the refinement of the CNTR design, edging it closer to practical implementation.