ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Pramatha Bhat, Kendall R. Adams, Stephen J. Herring, Brad Kirkwood
Nuclear Technology | Volume 211 | Number 4 | April 2025 | Pages 790-806
Research Article | doi.org/10.1080/00295450.2024.2361185
Articles are hosted by Taylor and Francis Online.
For deep-space propulsion and interplanetary exploration, the centrifugal nuclear thermal rocket (CNTR) has the ability to achieve a very high specific impulse (Isp) metric beyond that of conventional chemical rockets or solid-core nuclear thermal propulsion systems. The high Isp allows the rocket to use less propellant or achieve a higher velocity for shorter transit times. However, the cylindrical containment structure of a CNTR fuel element encounters extreme conditions, as it houses molten uranium at temperatures exceeding 1408 K, leading to challenges such as dissolution, chemical reactions, and thermal stresses that conventional materials struggle to withstand.
This study aims to address this issue by analyzing appropriate materials for constructing the cylindrical containment component. The operating conditions of the annular porous medium that confines the liquid uranium in the centrifugal fuel element are simulated by conducting a comprehensive one-dimensional numerical analysis using a range of candidate porous materials, including Mo, W, zirconium carbide, and silicon carbide. The porous structure facilitates the flow of the hydrogen propellant into the internal molten uranium section, where it gains significant thermal energy while simultaneously cooling the cylinder. The containment cylinder has an internal temperature of 1478.1 K, exceeding the melting point of uranium, while the external gas temperature of the hydrogen propellant is much lower. This temperature difference induces significant thermal stresses in the cylinder.
The porous containment cylinder made from molybdenum was able to maintain elastic deformation throughout the thickness of the cylinder, showcasing its ability to handle these extreme thermal stress conditions. Tungsten, on the other hand, experienced plastic deformation at the cylinder’s edges and elastic deformation through the middle radial locations. In contrast, the stresses experienced by the ceramic materials far exceeded their failure stress values, leading to brittle failure. These findings will help with the refinement of the CNTR design, edging it closer to practical implementation.