ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
ANS 2026 election is open
The 2026 American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect as well as six board members (five U.S. directors and one non-U.S. director). Completed ballots must be submitted by 12:00 p.m. (CDT) on Wednesday, April 1, 2026.
All ANS members have been emailed a unique access key from third-party election vendor ElectionBuddy. Each member can use their access key to vote once, and each vote will remain anonymous. Visit secure.electionbuddy.com/ballot to vote.
Muneerah A. Al-Aqeel
Nuclear Technology | Volume 211 | Number 4 | April 2025 | Pages 742-754
Research Article | doi.org/10.1080/00295450.2024.2355405
Articles are hosted by Taylor and Francis Online.
In modern life, cement products have become an essential material for the foundations in many structural building designs. Because of this, the natural effects of this material need to be tested and cannot be ignored. Modeling interactions of gamma rays with several cementitious compounds is the focus of this study. Gamma radiations exist naturally and artificially, but with limited gamma-ray energies, which are not easy to access for experimental gamma attenuation studies. So in the current work, a wide range of low gamma-ray energies (0.01 to 0.356 MeV) are applied to investigate the gamma radiation attenuation properties theoretically for different cement materials. Also, the Monte Carlo statistical method is applied using the Geant4 toolkit to simulate the results.
The outcomes are compared with theoretical values using XCOM to validate at these energies. The effective atomic number (), electron density (), and half-value layers (HVLs) for the studied samples are computed based on the simulated mass attenuation coefficient (), as expected. The outcomes show good agreement between the simulated results with those calculated theoretically by XCOM within an 11% deviation.
The silica fume sample showed a slightly higher value compared with the other samples. The dependence of the photon energy and cement composition on the values of the and HVLs are investigated and discussed. In addition, the values of and for all cement samples behaved similarly in the given photon energy range, and they decreased as the photon energy increased.