ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
On North Carolina's ratification of Senate Bill 266
I have been a North Carolinian for 62 years and involved in the state’s nuclear energy industry from my high school days to today. I have seen firsthand how North Carolina has flourished. This growth has been due to the state’s enterprising people and strong leaders. Clean, competitive, and always-on nuclear power has also played an important role.
Muneerah A. Al-Aqeel
Nuclear Technology | Volume 211 | Number 4 | April 2025 | Pages 742-754
Research Article | doi.org/10.1080/00295450.2024.2355405
Articles are hosted by Taylor and Francis Online.
In modern life, cement products have become an essential material for the foundations in many structural building designs. Because of this, the natural effects of this material need to be tested and cannot be ignored. Modeling interactions of gamma rays with several cementitious compounds is the focus of this study. Gamma radiations exist naturally and artificially, but with limited gamma-ray energies, which are not easy to access for experimental gamma attenuation studies. So in the current work, a wide range of low gamma-ray energies (0.01 to 0.356 MeV) are applied to investigate the gamma radiation attenuation properties theoretically for different cement materials. Also, the Monte Carlo statistical method is applied using the Geant4 toolkit to simulate the results.
The outcomes are compared with theoretical values using XCOM to validate at these energies. The effective atomic number (), electron density (), and half-value layers (HVLs) for the studied samples are computed based on the simulated mass attenuation coefficient (), as expected. The outcomes show good agreement between the simulated results with those calculated theoretically by XCOM within an 11% deviation.
The silica fume sample showed a slightly higher value compared with the other samples. The dependence of the photon energy and cement composition on the values of the and HVLs are investigated and discussed. In addition, the values of and for all cement samples behaved similarly in the given photon energy range, and they decreased as the photon energy increased.