ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
NECX debut: Shaping the next era of energy
The sold-out inaugural Nuclear Energy Conference & Expo (NECX) got off to a roaring start in Atlanta, Ga., Tuesday morning with an opening plenary that was a live highlight reel discussing the latest industry achievements.
Starting with a lively promo video that left the audience amped up for Entergy’s CEO and NEI chair Drew Marsh, who welcomed everyone to the event, hosted jointly by the American Nuclear Society and the Nuclear Energy Institute. He spoke to a full house of more than 1,300 attendees, promising a blend of science, technology, policy, and advocacy centered around the future of nuclear energy.
Cihang Lu, Erofili Kardoulaki, Nicolas E. Stauff, Arantxa Cuadra
Nuclear Technology | Volume 211 | Number 4 | April 2025 | Pages 690-707
Research Article | doi.org/10.1080/00295450.2024.2348732
Articles are hosted by Taylor and Francis Online.
Heat-pipe microreactors (HPMRs) are very small-scale nuclear reactors that employ heat pipes (HPs) for heat removal. HPMRs can be easily integrated with other forms of renewable energies, can be used for emergency responses to disaster relief zones, can be deployed in remote locations not connected to the grid, and can be removed from sites and replaced by new ones. HPMRs can also be used for space missions as HPs do not rely on gravity for heat transfer. Conventional fuel materials, such as uranium oxide (UO2) and uranium oxycarbide (UCO), are currently considered in most existing HPMR designs, but ceramic uranium nitride (UN) fuel that has high uranium density, high thermal conductivity, and high melting point may become a better fuel candidate. Through neutronics calculations, this paper assesses the impact of using UN fuel in HPMRs with two different neutron spectra (fast and thermal) and two different fuel forms [traditional solid fuel pellets and TRi-structural-ISOtropic (TRISO) fuel compacts]. It was concluded that retrofitting HPMRs with UN fuel has the potential to reduce the initial 235U enrichment requirement by ~3 wt% (to keep the same cycle length) or increase the cycle length (by keeping the same initial 235U enrichment), which enables more compact and transportable HPMR core designs. However, using UN fuel decreases the control element worth [by up to 20% for the Special Purpose Reactor (SPR) and 5% for HP-MR] and is up to 80% more costly. Increasing 15N enrichment can further decrease the initial 235U enrichment requirement and increase the control element worth but is more costly. Compared to fast-spectrum HPMRs fueled with solid pellet fuels, retrofitting UN fuel is more suitable for thermal-spectrum HPMRs fueled with TRISO fuel compacts, where the neutron spectrum hardening caused by using UN is less significant.