ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Rashdan Malkawi, Sayel Marashdeh, Kafa Al-Khasawneh, Aseel Al-Mohammad, Mahmoud Suaifan, Mohammad Omari, Majd Hawwari
Nuclear Technology | Volume 211 | Number 4 | April 2025 | Pages 674-689
Research Article | doi.org/10.1080/00295450.2024.2346869
Articles are hosted by Taylor and Francis Online.
Rare earth elements (REEs) are widely used in several high-tech modern industries. Quantification of REEs demonstrates a technical challenge that requires the use of special scientific techniques. These techniques commonly introduce uncertainties that may propagate not only during the sample preparation phase but also in subsequent measurement and analysis phases. The Jordan Atomic Energy Commission is starting up a REE investigation program utilizing many of its available physical and chemical analytical capabilities, one of which is the Neutron Activation Analysis Facility (NAAF) at the Jordan Research and Training Reactor (JRTR). The NAAF provides accurate and relatively quick analytical services for better estimations of REEs in the unknown samples of interest without the need for any chemical processing prior to or after sample activation. In this paper, we present analytical results of routinely conducted instrumental neutron activation analysis (NAA) experiments using REE certified samples. To optimize future NAA investigations, first, a time-dependent Monte Carlo code at the JRTR, named Monte Carlo Code for Advanced Reactor Design and Analysis (McCARD), is herein validated via comparing its calculation results of the activation process against the presented results of the NAA experiments. The certified REE samples were activated in a well-thermalized NAA vertical activation hole within the reactor reflector region. Detailed neutronics and burnup calculations as well as transmutations were performed using McCARD. Ultimately, this study aims to assess the accuracy and reliability of the McCARD calculation models as a part of the effort of setting up a dedicated REE analysis laboratory at the JRTR. This study shows very good agreement between both obtained results—NAA experiment and McCARD calculations—with confidence levels noted to be more than 90% for almost all REE elements.