ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Jianwei Zhang, Tuo Li, Bo Tian, Jinfeng Li, Wenze Li, Abdullah, Nan Zhang, Hongtao Zhao
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 624-634
Note | doi.org/10.1080/00295450.2024.2343116
Articles are hosted by Taylor and Francis Online.
Adsorption is widely regarded as the most promising method for uranium extraction. Among the various materials that have been studied, graphene oxide (GO) has attracted intensive interest because of its large specific surface area and abundant oxygen-containing functional groups. However, the layers tend to aggregate owing to pronounced Van der Waals forces, which reduce the surface area and diminish the likelihood of contact between uranyl ions and adsorption sites. Graphite oxide is an intermediate product of GO, with a simple preparation process and low cost. In this study, graphite oxide nanosheets (GONs) were synthesized using graphite oxide powder as the raw material and the NaOH activation method. GONs possessed a larger specific surface area and more carboxyl groups, which resulted in an excellent uranium adsorption capacity. The maximum adsorption capacity was found to be 578.0 mg·g−1, and the adsorption rate was 90.8% within 30 min. The adsorption process closely resembled the pseudo-second-order model and the Langmuir model. The mechanism of uranium adsorption by GONs was the synergistic coordination of -COOH and -OH with U(VI). This research suggests that the novel uranium adsorbent GONs can be applied to efficiently capture U(VI) from radioactive wastewater.