ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Jianwei Zhang, Tuo Li, Bo Tian, Jinfeng Li, Wenze Li, Abdullah, Nan Zhang, Hongtao Zhao
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 624-634
Note | doi.org/10.1080/00295450.2024.2343116
Articles are hosted by Taylor and Francis Online.
Adsorption is widely regarded as the most promising method for uranium extraction. Among the various materials that have been studied, graphene oxide (GO) has attracted intensive interest because of its large specific surface area and abundant oxygen-containing functional groups. However, the layers tend to aggregate owing to pronounced Van der Waals forces, which reduce the surface area and diminish the likelihood of contact between uranyl ions and adsorption sites. Graphite oxide is an intermediate product of GO, with a simple preparation process and low cost. In this study, graphite oxide nanosheets (GONs) were synthesized using graphite oxide powder as the raw material and the NaOH activation method. GONs possessed a larger specific surface area and more carboxyl groups, which resulted in an excellent uranium adsorption capacity. The maximum adsorption capacity was found to be 578.0 mg·g−1, and the adsorption rate was 90.8% within 30 min. The adsorption process closely resembled the pseudo-second-order model and the Langmuir model. The mechanism of uranium adsorption by GONs was the synergistic coordination of -COOH and -OH with U(VI). This research suggests that the novel uranium adsorbent GONs can be applied to efficiently capture U(VI) from radioactive wastewater.