ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC finishes draft supplemental EIS for Clinch River SMR site
The Nuclear Regulatory Commission and the U.S. Army Corps of Engineers have completed a draft supplemental environmental impact statement for a small modular reactor at the Tennessee Valley Authority’s Clinch River nuclear site in Oak Ridge, Tenn.
Mellissa Komninakis, Joseph Sinicrope, James C. Nicholson, Philip Moore, Yolanda Rodriguez, Leonel Lagos, Daniela Radu
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 598-606
Research Article | doi.org/10.1080/00295450.2024.2345945
Articles are hosted by Taylor and Francis Online.
Safety basis calculations support the safety considerations necessary for legacy nuclear facilities as they transition from active use, through limited operations and standby modes, until final disposition is achieved. Many of the calculations are governed heavily by the coefficients presented in DOE-HDBK-3010 in the form of airborne release of radioactive material resulting from penetration of the facility per seismic activity, full facility fires, and/or explosions. The main objective of this study is to validate the original data for airborne release fractions (ARFs) for powder contaminants under impact, as determined in DOE-HDBK-3010. The limited data available for impact experiments was generated at the Rocky Flats Plant in 1987, where the median ARFs for surrogate powder contamination were 4E-4 with a bounding value of 1E-2. However, estimating the level of uncertainty was challenging in the absence of multiple measurements conducted under identical test conditions. Moreover, the uncertainty was significantly increased due to the restricted range of the test conditions.
A more modern approach has been developed for the experimental design in this study, utilizing standardized techniques and analytical instruments. An impact apparatus was employed to be able deliver repeatable impact forces up to 369 kg·cm (320 in.·lb.). Cesium chloride was used as the surrogate powder contaminant in these experiments as it is extremely soluble in water and is even more so in the acidic media used to leach/dissolve the air filters for concentration analysis using mass spectrometry The developed approach leveraged multiple international standards and historical documents in an attempt to recreate a valid testing system that can be used for future analysis and to analyze mitigation factors such as contamination fixative technologies. The current ARFs were found to be consistent with the original values in DOE-HDBK-3010, 3.47E-4 and 4E-4, respectively.