ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
ANS 2026 election is open
The 2026 American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect as well as six board members (five U.S. directors and one non-U.S. director). Completed ballots must be submitted by 12:00 p.m. (CDT) on Wednesday, April 1, 2026.
All ANS members have been emailed a unique access key from third-party election vendor ElectionBuddy. Each member can use their access key to vote once, and each vote will remain anonymous. Visit secure.electionbuddy.com/ballot to vote.
Jian Cheng, Kewei Fang, Kexun Fei, Qiang Wang, Bo Li, Eduardo B. Farfán
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 584-597
Research Article | doi.org/10.1080/00295450.2024.2344912
Articles are hosted by Taylor and Francis Online.
Corrosion-resistant iron with nickel and chromium (CRDINiCr) is often used in butterfly valves for flow control at nuclear power plants, where resistance to corrosion, oxidation, and wear is significant. In this study, a failure analysis of a CRDINiCr alloy butterfly valve was performed by combining morphology characterization and in situ elemental composition analysis of failure of various regions of the valve. Based on the testing and analysis conducted in this study, it was determined that the inspected valve body material exhibited several defects, including poor graphitization, porosity, and the presence of eutectic carbides. These imperfections compromised the required plasticity criteria, resulting in significant embrittlement of the material. Therefore, under the impact stresses applied during the pressure testing, these vulnerabilities facilitated rapid crack initiation and propagation. The presence of such defects significantly compromised the material’s resistance to fracture under dynamic loading conditions, underscoring the critical importance of stringent quality control in the production of such materials to ensure their reliability and performance in operational settings at nuclear power plants.