ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Joeun L. Kot, Theodore Thomas, Jason T. Harris
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 570-583
Research Article | doi.org/10.1080/00295450.2024.2343971
Articles are hosted by Taylor and Francis Online.
Risk assessment involves analyzing potential accident scenarios to identify hazards and assess associated risk factors. Nuclear safety and security both aim to protect against radiation exposure, but they have developed separately with distinct risk assessment methodologies. As a result, there is a need for a comprehensive risk assessment method that covers both the safety and security aspects. The Potential Facility Risk Index (PFRI) was developed in 2020 to provide a quantitative approach to evaluating the security risk of nuclear facilities, but it does not consider safety risks.
This study aims to enhance the PFRI framework by incorporating probabilistic risk assessment methods to include safety risks. It assesses the risk of a hypothetical incident caused by adversaries at a hypothetical nuclear facility after a successful theft of nuclear material, followed by the construction and detonation of a radiological dispersal device. To achieve this goal, the study utilized event tree analysis and pathway analysis for loss event assessment and consequence analysis using the MELCOR accident consequence code systems for loss magnitude. New risk criteria were also established to determine the PFRI risk score.
Based on the results, the study found that the PFRI score for the hypothetical facility was 1, indicating that the risk level was negligible. Future studies incorporating other scenarios, such as sabotage and transportation, will help assess the total security risk of the facility. This method can also help facilitate the integration of risk assessments for nuclear safety and security.