ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Markus Preston, Erik Branger, Vitaly Fedchenko, Sophie Grape, Robert E. Kelley, Vaibhav Mishra, Débora M. Trombetta
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 548-569
Research Article | doi.org/10.1080/00295450.2024.2342184
Articles are hosted by Taylor and Francis Online.
There exist elements apart from uranium and plutonium that could potentially be used to construct the core of a nuclear explosive device. These belong to the so-called minor actinides (MAs), which exist in nonnegligible amounts in spent nuclear fuel (SNF) and are in nearly all cases not covered by international safeguards. Future reprocessing of SNF could result in significant separation of these elements, potentially leading to new proliferation concerns. In this work, a methodology for a transparent assessment of the barriers against proliferation of MAs has been developed and applied to the case of neptunium, americium, and curium separated from spent fuel from pressurized water reactors. In this methodology, openly available data and Monte Carlo simulations have been used to assess the barriers posed by a number of parameters relevant to the production of a nuclear explosive device from SNF. The evaluation shows that the properties of neptunium present low barriers to proliferation and that it should be discussed within the context of future nonproliferation treaties and possibly be placed under international safeguards. The properties of americium and curium present higher barriers to proliferation, meaning that these elements require less focus in the nonproliferation context.