ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Markus Preston, Erik Branger, Vitaly Fedchenko, Sophie Grape, Robert E. Kelley, Vaibhav Mishra, Débora M. Trombetta
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 548-569
Research Article | doi.org/10.1080/00295450.2024.2342184
Articles are hosted by Taylor and Francis Online.
There exist elements apart from uranium and plutonium that could potentially be used to construct the core of a nuclear explosive device. These belong to the so-called minor actinides (MAs), which exist in nonnegligible amounts in spent nuclear fuel (SNF) and are in nearly all cases not covered by international safeguards. Future reprocessing of SNF could result in significant separation of these elements, potentially leading to new proliferation concerns. In this work, a methodology for a transparent assessment of the barriers against proliferation of MAs has been developed and applied to the case of neptunium, americium, and curium separated from spent fuel from pressurized water reactors. In this methodology, openly available data and Monte Carlo simulations have been used to assess the barriers posed by a number of parameters relevant to the production of a nuclear explosive device from SNF. The evaluation shows that the properties of neptunium present low barriers to proliferation and that it should be discussed within the context of future nonproliferation treaties and possibly be placed under international safeguards. The properties of americium and curium present higher barriers to proliferation, meaning that these elements require less focus in the nonproliferation context.