ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
M. W. Abdulrahman
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 476-499
Research Article | doi.org/10.1080/00295450.2024.2337234
Articles are hosted by Taylor and Francis Online.
This research presents the development of a one-dimensional analytical model to investigate the impact of pressure variations in the primary loop on natural circulation (NC). The model takes into account a sinusoidal input heat distribution and derives equations for the parameters of NC. The model covers a broad spectrum of NC patterns, spanning from fully single-phase to fully two-phase flow. The research demonstrates a smooth and continuous transition between various kinds of NC. Moreover, the research demonstrates that NC is capable of efficiently dissipating the decay heat generated inside the core of a pressurized water reactor, encompassing a range from 100% to 60% of the total inventory present within the primary loop. The findings of this study are compared to prior research outcomes and demonstrate a reasonable level of consistency. Additionally, comparisons are made with uniform input power distribution to demonstrate that there are no significant differences in the NC parameters when using sinusoidal heat input.