ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. W. Abdulrahman
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 476-499
Research Article | doi.org/10.1080/00295450.2024.2337234
Articles are hosted by Taylor and Francis Online.
This research presents the development of a one-dimensional analytical model to investigate the impact of pressure variations in the primary loop on natural circulation (NC). The model takes into account a sinusoidal input heat distribution and derives equations for the parameters of NC. The model covers a broad spectrum of NC patterns, spanning from fully single-phase to fully two-phase flow. The research demonstrates a smooth and continuous transition between various kinds of NC. Moreover, the research demonstrates that NC is capable of efficiently dissipating the decay heat generated inside the core of a pressurized water reactor, encompassing a range from 100% to 60% of the total inventory present within the primary loop. The findings of this study are compared to prior research outcomes and demonstrate a reasonable level of consistency. Additionally, comparisons are made with uniform input power distribution to demonstrate that there are no significant differences in the NC parameters when using sinusoidal heat input.