ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Dasheng Wang, Jin Ting, Xu Xiao, Tan Jianping, Zhang Kun, Wang Guozhen
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 439-451
Research Article | doi.org/10.1080/00295450.2024.2329833
Articles are hosted by Taylor and Francis Online.
This study investigates the effects of the material mechanical properties heterogeneity and strength mismatch variation on crack driving forces for cracks in a dissimilar metal welded joint (DMW) of a reactor pressure vessel inlet nozzle to the safe end. Linear elastic and elastic-plastic analyses are carried out to calculate the stress intensity factor (SIF) and J-integral for cracks in the DMW. The effects of crack locations, crack depths, and strength mismatch factors on the SIF and J-integral are studied. The SIF results obtained by finite element analysis are compared with those obtained by the influence function method adopted in the nuclear power code. Results show that the effect of crack location on the SIF can be ignored. The SIFs calculated by the influence function method for cracks in the DMW are basically reasonable, although its conservatism is slightly insufficient. Moreover, with moving the crack location from the nozzle through buttering and weld metal to the safe end, the J-integral increases. The effect of the crack location and strength mismatch factors on the J-integral is essentially caused by variation of the plastic zone and the material properties of the crack front. The crack sizes affect the level of influence of the crack location and the strength mismatch factors on the J-integral. The J-integral increases with decrease of the strength mismatch factor.