ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Dasheng Wang, Jin Ting, Xu Xiao, Tan Jianping, Zhang Kun, Wang Guozhen
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 439-451
Research Article | doi.org/10.1080/00295450.2024.2329833
Articles are hosted by Taylor and Francis Online.
This study investigates the effects of the material mechanical properties heterogeneity and strength mismatch variation on crack driving forces for cracks in a dissimilar metal welded joint (DMW) of a reactor pressure vessel inlet nozzle to the safe end. Linear elastic and elastic-plastic analyses are carried out to calculate the stress intensity factor (SIF) and J-integral for cracks in the DMW. The effects of crack locations, crack depths, and strength mismatch factors on the SIF and J-integral are studied. The SIF results obtained by finite element analysis are compared with those obtained by the influence function method adopted in the nuclear power code. Results show that the effect of crack location on the SIF can be ignored. The SIFs calculated by the influence function method for cracks in the DMW are basically reasonable, although its conservatism is slightly insufficient. Moreover, with moving the crack location from the nozzle through buttering and weld metal to the safe end, the J-integral increases. The effect of the crack location and strength mismatch factors on the J-integral is essentially caused by variation of the plastic zone and the material properties of the crack front. The crack sizes affect the level of influence of the crack location and the strength mismatch factors on the J-integral. The J-integral increases with decrease of the strength mismatch factor.