ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
ANS 2026 election is open
The 2026 American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect as well as six board members (five U.S. directors and one non-U.S. director). Completed ballots must be submitted by 12:00 p.m. (CDT) on Wednesday, April 1, 2026.
All ANS members have been emailed a unique access key from third-party election vendor ElectionBuddy. Each member can use their access key to vote once, and each vote will remain anonymous. Visit secure.electionbuddy.com/ballot to vote.
Saroj Kumar Panda, Panantharayil Vishnu Anand, Vivek Kumar Mishra, Ramachandran Pillai Rajeev, Konda Athmaram Venkatesan, Krishnamurthy Ananthasivan
Nuclear Technology | Volume 211 | Number 3 | March 2025 | Pages 377-399
Research Article | doi.org/10.1080/00295450.2024.2326714
Articles are hosted by Taylor and Francis Online.
There are widespread occurrence and application of solid-liquid sedimentation processes among different industries. Therefore, it becomes important to understand the hydrodynamic inside the process equipment and particle agglomeration characteristics. In the present work, solid-liquid sedimentation is analyzed, which will be helpful for the design of continuous process equipment in plutonium (Pu) reconversion. Experiments were carried out in a batch settler to understand solid sedimentation in suspension in terms of varying the overall solid fractions. Euler-Euler two-fluid simulations were performed to investigate the local and overall solid phase volume fraction distributions, position of the active interface (AI) (settling curve), axial solid phase velocity, and pressure distributions during settling, and selected data were compared with the measured data. Further, the discrete population balance model (PBM) with different agglomeration kernels was used with the two-fluid computational fluid dynamics (CFD) model to understand and further improve predictions in terms of the AI position. The variation in number density of the different particles in the settler with time was investigated. The predicted results show that agglomeration is dominant during the sedimentation process and application of the discrete PBM with the CFD model enhances the predictive capability in comparison with the predictions obtained from only the two-fluid model. The results reported using CFD+PBM will aid in the design of continuous process equipment (thickener/precipitator) for Pu reconversion.