ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Zhenyu Wang, Zungang Wang, Jian Sun, Zhiyuan Li, Shanxue Xi, Xing Wei, Weiqi Huang, Chunzhi Zhou
Nuclear Technology | Volume 211 | Number 2 | February 2025 | Pages 332-343
Research Article | doi.org/10.1080/00295450.2024.2325751
Articles are hosted by Taylor and Francis Online.
Reverse reconstruction methods for the radiation field do not require information on the radioactive source and are capable of constructing the radiation field using a small amount of monitoring data, showing huge significance for radiation protection. However, in previous studies, inverse reconstruction methods have given less consideration to variations in the time dimension. Herein, the principle of the Poisson Kriging method solved by the surrogate model has been analyzed, and the Poisson Kriging method has been applied to the inverse reconstruction of two-dimensional radiation fields at different moments.
On this basis, this work also investigated the effects of the principal function and correlation coefficient model on the objective function, the results of which demonstrate that the quadratic polynomial principal function and the Gaussian model correlation coefficient have good stability and convergence. Compared with the inverse distance weighting methods and the radial basis function methods, the Poisson Kriging method has smaller errors, showing that it is more suitable for reconstructing complex radiation fields.
Finally, the Poisson Kriging method was applied to the Fukushima nuclear accident radiation field calculation. The Pearson correlation coefficient of its results was r = 0.49, reflecting the validity of this method. Our work provides a calculation method for the spatial distribution and trend of the radiation field in the early stages of a nuclear accident, which is helpful for furthering radiation protection and emergency responses to nuclear accidents.