ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Shikun Xu, Lingyi Qu, Tao Yu, Jinsen Xie, Ji Tong, Zining Ni, Nianbiao Deng, Hiroshi Watabe
Nuclear Technology | Volume 211 | Number 2 | February 2025 | Pages 258-272
Research Article | doi.org/10.1080/00295450.2024.2324513
Articles are hosted by Taylor and Francis Online.
The fundamental prompt neutron delayed constant α, the effective delayed neutron fraction , and the effective neutron generation time are important for accurate measurements of keff in subcritical systems. In this paper, based on the open-source program OpenMC, a module with the function of calculating the α-eigenvalue is developed based on the k-α iterative method. Based on the nodal expansion method (NEM), an adjoint neutron flux calculation program was developed, which in turn used the idea of coupling the k-α iterative method with the NEM to obtain the neutron kinetics parameters (α, , and ) of the subcritical system and allowed for a more accurate keff under the subcritical system as compared to the traditional k-mode program.
In this paper, the results of the α-eigenvalues calculated by the program are validated using the Godiva benchmark and the MUSE-4 device as computational objects. The accuracy of the results for and was verified with the KUCA (Kyoto University Critical Assembly) benchmark. The results of the keff calculations using k-mode and α-mode are compared with the ADS benchmark.
The results show that the calculation program (α-mode) can obtain keff under the subcritical system more accurately, which makes up for the shortcomings of the traditional program, which cannot be calculated under the deep subcritical system. The relative error between the calculated and reference values was less than 750 pcm at deep subcriticality (keff = 0.899). The error was less than 400 pcm at the deeper subcritical system (keff = 0.952), which can satisfy the demand for neutron dynamics parameters and keff calculation in the subcritical system. The program can also continue to be upgraded in the later stage in the calculation method and other aspects.